129. Molecular Polarisability. The Conformations of Certain Di-ortho-substituted Aromatic Aldehydes and Ketones.

Abstract

By M. J. Aroney, (Miss) M. G. Corfield, and R. J. W. Le Fèvre. Dipole moments and molar Kerr constants are reported for 2,4,6trimethylbenzaldehyde, acetophenone, 2,4,6-trimethylacetophenone, and 2,3,5,6-tetramethylacetophenone as solutes in carbon tetrachloride. The polarisability specifications and thence the molar Kerr constants for various conformations of these molecules have been computed by addition of component bond and group semiaxes. Comparison of the observed and the calculated values shows that ϕ, the interplanar angle between the aromatic ring and the valencies of the extranuclear trigonal carbon atom, is approximately 0 for 2,4,6-trimethylbenzaldehyde and acetophenone and 90° for 2,4,6-trimethylacetophenone and 2,3,5,6-tetramethylacetophenone.

The effect of ortho-substituents on the spectral properties and electric moments of aromatic aldehydes and ketones has been extensively studied. ${ }^{1-6}$ It has been shown that introduction of ortho-groups can prevent the assumption of a planar configuration for the group $\mathrm{Ph} \cdot \mathrm{C}=\mathrm{O}$ and this results in a lowering of the mesomeric moment and of the intensity of the K-band in the ultraviolet absorption spectrum. This has been utilised by Braude and Sondheimer ${ }^{1}$ in estimating the degree of non-planarity between the benzene-ring plane and that of the valencies of the extranuclear trigonal carbon. In the present work we interpret, for five molecules, the magnitude and algebraic sign of the
${ }^{1}$ Braude and Sondheimer, $J ., 1955,3754$.
${ }^{2}$ Murray, Cleveland, and Saunders, J. Amer. Chem. Soc., 1942, 64, 1181.
${ }^{3}$ Kadesch and Weller, J. Amer. Chem. Soc., 1941, 63, 1310.
${ }^{4}$ Bentley, Everard, Marsden, and Sutton, J., 1949, 2957.
${ }^{5}$ Le Fèvre and Le Fèvre, J., 1950, 1829.

- Smith, J., 1957, 4050.

Table 1.
Incremental Kerr effects, refractive indexes, dielectric constants, and densities of solutions in carbon tetrachloride at $\mathbf{2 5}$.

,4,6-Trimethylbenzaldehyde									
$10^{6} w_{2}$	1178	4071	4365	5715	$10^{6} w_{2}$	11,000	14,730	18,310	21,670
$10^{7} \Delta B$	$0 \cdot 039$	$0 \cdot 148$	$0 \cdot 162$	$0 \cdot 208$	$10^{4} \Delta n$	15	20	25	29
ε^{25}	$2 \cdot 2409$	$2 \cdot 2746$	$2 \cdot 2787$	$2 \cdot 2940$	d_{4}^{25}..	1.57468	1.57149	1.56789	1.56515
whence $\Sigma 10^{2} \Delta B / \Sigma w_{2}=36.3 ; ~ \Sigma \Delta \varepsilon / \Sigma w_{2}=11.8$. whence $\sum \Delta n / \Sigma w_{2}=0.135 ; ~ \Sigma \Delta d / \Sigma w_{2}=-0.897$.									

$$
\text { whence } \sum 10^{2} \Delta B / \sum w_{2}=0.914 ; \sum \Delta n / \sum w_{2}=0.091 .
$$

$10^{6} w_{2} \ldots \ldots$	10,060	20,311	28,730	51,550	69,750
$\varepsilon^{25} \cdots \cdots \cdots$	$2 \cdot 2288$	$2 \cdot 2306$	$2 \cdot 2322$	$2 \cdot 2361$	$2 \cdot 2395$
$d_{4}^{25} \cdots \cdots \cdots$	$1 \cdot 57160$	$1 \cdot 55864$	$1 \cdot 54815$	$1 \cdot 52066$	$1 \cdot 49918$
				whence	$\Sigma \Delta \varepsilon / \sum w_{2}=$
			$0 \cdot 180 ; \Sigma \Delta d / \Sigma w_{2}=-1 \cdot 24$.		

2,3,5,6-Tetramethylacetophenone

$\begin{aligned} & 10^{6} w_{2} \\ & 10^{7} \Delta B \end{aligned}$	$\begin{gathered} 9849 \\ -0.103 \end{gathered}$	$\begin{gathered} 9887 \\ -0.101 \end{gathered}$	$\begin{array}{r} 14,200 \\ -0 \cdot 146 \end{array}$	$\begin{gathered} 14,240 \\ -0.150 \end{gathered}$ $\text { ence } \Sigma 1$	$16,930$ -0.167 $\Delta B / \Sigma w$	$\begin{gathered} 18,870 \\ -0.188 \\ =-10 . \end{gathered}$	$\begin{array}{r} 19,770 \\ -0 \cdot 204 \end{array}$	$\begin{gathered} 20,790 \\ -0.212 \end{gathered}$	$\begin{gathered} 21,300 \\ -0.212 \end{gathered}$	$\begin{array}{r} 26,420 \\ -0.27 \end{array}$
$10^{6} w_{2}$	6719	7443	9849	12,640	14,240	14,440	16,930	18,870	19,340	21,300
$10^{4} \Delta n$	8			15		18	21		24	26
ε^{25}	$2 \cdot 2886$	$2 \cdot 2934$			2.3529	$2 \cdot 3580$		$2 \cdot 3928$	$2 \cdot 4033$	
d_{4}^{25}	$1 \cdot 57777$	-	1.57501	-	-	1.57068	1.56696	-	1.56568	

Table 2.
Polarisations, dipole moments, molar Kerr constants, etc., at infinite dilution in carbon tetrachloride at $\mathbf{2 5}^{\circ}$.

Solute	$\alpha \varepsilon_{1}$	β	γ	δ	∞P_{2} (c.c.)	$R_{\text {D }}$ (c.c.)	$\mu(\mathrm{d}) *$	$10^{12}{ }_{\infty}\left({ }_{m} K_{2}\right)$
2,4,6-Trimethylbenz-								
aldehyde	11.8	-0.566	0.093	$+519$	227	46.5	$2 \cdot 95$	$+572$
Acetophenone	$14 \cdot 6$	-0.526	0.084	+436	220	36.3	$2 \cdot 96$	$+387$
2,4,6-Trimethylacetophenone	$9 \cdot 68$	-0.645	0.068	-103	215	$51 \cdot 1$	$2 \cdot 81$	-129
Durene	$0 \cdot 180$	-0.783	0.062	+13.1	$46 \cdot 4$	$45 \cdot 1$	0	+14.8
2,3,5,6-Tetramethylacetophenone	8.97	-0.619	0.084	-146	220	$56 \cdot 1$	$2 \cdot 81$	-19

molar Kerr constant (a physical property which is sensitively dependent on the disposition of the carbonyl-group moment relative to the plane of the benzene ring) in terms of the preferred molecular conformation.

Experimental

Materials, Apparatus, etc.-The solutes were prepared and/or purified immediately before use to give: 2,4,6-trimethylbenzaldehyde, b. p. $130-135^{\circ} / c a .20 \mathrm{~mm}$.; acetophenone, b. p. $92^{\circ} /$ ca. 20 mm .; 2,4,6-trimethylacetophenone, b. p. $122^{\circ} / c a .20 \mathrm{~mm}$.; durene, m. p. $79 \cdot 5^{\circ}$; 2,3,5,6-tetramethylacetophenone, m. p. 73 ${ }^{\circ}$. Carbon tetrachloride, as solvent, was dried $\left(\mathrm{CaCl}_{2}\right)$, fractionated through a $1-\mathrm{m}$. column packed with glass helices, then stored with fresh calcium chloride. Symbols, headings, and methods of calculation used in the following Tables are explained in ref. 7, pp. 280-283. For carbon tetrachloride at $25^{\circ}, \varepsilon_{1}=2 \cdot 2270, d_{1}=1 \cdot 58454$, $\left(n_{\mathrm{D}}\right)_{1}=1.4575$, and $B_{1}=0.070 \times 10^{-7}$ (Na light).

Previous Measurements.-Determinations of the dipole moment of acetophenone made before 1948 are listed by Wesson ${ }^{8}$ in the M.I.T. Tables which contain no entries for any of the other solutes examined here. Measurements (in D units) recorded in the literature but not included in these Tables are: acetophenone, 2.88 (ref. 3), 2.96 (ref. 4), 2.96 (ref. 9), 2.97 (recalculated from data of ref. 5) ; 2,4,6-trimethylbenzaldehyde, $2 \cdot 96$ (ref. 3); 2,4,6-trimethylacetophenone, 2.71 (ref. 3), 2.70 (ref. 9), 2.81 (ref. 4), 2.79 (ref. 5); 2,3,5,6-tetramethylacetophenone, 2.68 (ref. 3). The solvent in each case is benzene; the appropriate reference is given in parentheses. Recalculation on the basis of ${ }_{\mathrm{D}} P=1.05 R_{\mathrm{D}}$ results in dipole moments $0.01-$ 0.02 lower than those listed above.

Discussion

Bond and Group Polarisabilities.-Our approach is to calculate (by the method outlined on p. 2486 of ref. 10) the polarisability semiaxes and thence the molar Kerr constants expected for possible conformations of each molecule examined and to compare the ${ }_{m} K$'s so obtained with those from experiment. Bond and group polarisability specifications * used in the subsequent calculations are:

	$b_{\mathbf{L}}$	$b_{\mathbf{T}}$	$b_{\mathbf{V}}$	Ref.			$b_{\mathbf{L}}$	b_{T}	$b_{\mathbf{V}}$	Ref.
$\mathrm{C}-\mathrm{H} \ldots \ldots \ldots .$.	0.064	0.064	0.064	7	$\mathrm{C}_{6} \mathrm{H}_{5} \ldots \ldots \ldots$	1.056	1.056	0.672	13	
$\mathrm{C}-\mathrm{C} \ldots \ldots \ldots \ldots$.	0.099	0.027	0.027	11	$\mathrm{C}_{9} \mathrm{H}_{11}$	$\ldots \ldots$	1.624	1.624	1.174	See text
$\mathrm{C}=\mathrm{O} \ldots \ldots \ldots \ldots$	0.230	0.140	0.046	12	$\mathrm{C}_{10} \mathrm{H}_{13}$	$\cdots \cdots$	1.748	1.872	1.292	,

Le Fèvre and Le Fèvre ${ }^{7}$ record $\infty\left({ }_{m} K_{2}\right)$ for mesitylene as $10 \cdot 1 \times 10^{-12}$ and this in conjunction with ${ }_{\mathrm{E}} P=38.8$ c.c. (estimated by addition of the bond parameters listed by Le Fèvre and Steel ${ }^{14}$ leads, by equations (1)-(4), to the polarisability semiaxes for mesitylene: $b_{1}\left(\mathrm{C}_{9} \mathrm{H}_{12}\right)=b_{2}\left(\mathrm{C}_{9} \mathrm{H}_{12}\right)=1 \cdot 688, b_{3}\left(\mathrm{C}_{9} \mathrm{H}_{12}\right)=1 \cdot 238$. Subtraction of one $\mathrm{C}-\mathrm{H}$ bond equivalent from each yields the $\mathrm{C}_{9} \mathrm{H}_{11}$ group polarisability specifications.

$$
\begin{gather*}
{ }_{\mathrm{m}} K=2 \pi N\left(\theta_{1}+\theta_{2}\right) / 9 . \tag{1}\\
\theta_{1}={ }_{\mathrm{D}} P\left[\left(b_{1}-b_{2}\right)^{2}+\left(b_{2}-b_{3}\right)^{2}+\left(b_{3}-b_{1}\right)^{2}\right] / 45 k T_{\mathrm{E}} P . \tag{2}\\
\theta_{2}=\left[\left(b_{1}-b_{2}\right)\left(\mu_{1}^{2}-\mu_{2}^{2}\right)+\left(b_{2}-b_{3}\right)\left(\mu_{2}^{2}-\mu_{3}^{2}\right)+\left(b_{3}-b_{1}\right)\left(\mu_{3}^{2}-\mu_{1}^{2}\right)\right] / 45 \boldsymbol{k}^{2} T^{2} . \tag{3}\\
{ }_{\mathrm{E}} P=4 \pi N\left(b_{1}+b_{2}+b_{3}\right) / 9 . \tag{4}
\end{gather*}
$$

The polarisability ellipsoid of durene, unlike that of mesitylene, is not one of revolution and the semiaxes cannot be obtained directly from the experimental values. Summation

[^0]of the component bond and group polarisabilities, and assuming undistorted trigonal valency angles for the ring carbons, results in $b_{1}\left(\mathrm{C}_{10} \mathrm{H}_{14}\right)$ (calc.) $=1 \cdot 812, b_{2}\left(\mathrm{C}_{10} \mathrm{H}_{14}\right)$ (calc.) $=$ 1.936 , and $b_{3}\left(\mathrm{C}_{10} \mathrm{H}_{14}\right)$ (calc.) $=1.356$, where these are located as shown in Fig. 1. The calculated molar Kerr constant follows, from equations (1) and (2), as 13.6×10^{-12} (${ }_{\mathrm{D}} P=$ ${ }_{\infty} P_{2}$ from Table 2; ${ }_{\mathrm{E}} P$ is calculated from ref. 14 as $43 \cdot 3$ c.c.) in reasonable agreement with that from experiment, so that we accept these semiaxes, less one $\mathrm{C}-\mathrm{H}$ contribution, as adequately describing the $\mathrm{C}_{10} \mathrm{H}_{13}$ group ellipsoid.

Molecular Conformations.-For each substance examined, the molecular polarisability semiaxes, the components of the permanent dipole moment along the principal axes directions, and the molar Kerr constants, have been computed for conformations defined by $\phi=0^{\circ}$ and $\phi=90^{\circ}$ where ϕ is the angle between the benzene ring plane and that of

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.
the valencies (assumed pure $s p^{2}$) of the oxygen-bonded carbon atom. The calculations are summarised in Table 3; the principal axes are located within the co-ordinate system X, Y, Z (see Figs. 2 and 3). Following Bramely and Le Fèvre, ${ }^{15}$ we assume that for the planar structures $(\phi=0)$, an exaltation of polarisability [estimated in this work from equation (4) by using $\Delta_{\mathrm{E}} P=0.95\left(R_{\mathrm{D}}\right.$ obs. $-R_{\mathrm{D}}$ calc. from recorded bond refractions $\left.{ }^{16}\right)$] acts along the $\mathrm{C}=\mathrm{O}$ longitudinal axis direction. We assume also that $\mu_{\text {res }}$ for any molecular model considered equals $\mu_{o b s}$ (from Table 2) and is directed along the $\mathrm{C}=\mathrm{O}$ bond axis.

Comparison of the observed molar Kerr constants of benzaldehyde $\left(+408 \times 10^{-12}\right.$; measured in benzene solution by Bramley and Le Fèvre ${ }^{15}$), 2,4,6-trimethylbenzaldehyde $\left(+572 \times 10^{-12}\right)$, and acetophenone $\left(+387 \times 10^{-12}\right)$ with the values of Table 3 shows clearly that all three must have planar or nearly planar structures ($\phi \sim 0$). The small apparent differences between ${ }_{\mathrm{m}} K_{\text {obs. }}$ and ${ }_{\mathrm{m}} K_{\text {calc. }}$ for $\phi=0$ reflect the uncertainty in the estimates of ΔR_{D} from which were calculated the exaltations of polarisability (Δb). Our computed values for benzaldehyde differ slightly from those given by Bramely and Le Fèvre ${ }^{15}$ whose assumption, that $\Delta b=\left[9\left(0.95 R_{\mathrm{D}}\right) / 4 \pi N\right]-\Sigma b_{\mathrm{i}}$ (calculated by summing the longitudinal, transverse, and vertical polarisabilities of all component bonds and groups), results in a somewhat smaller exaltation. The calculations are not much affected by the crudity of our assumption that $\mu_{\text {res }}$ acts along the $\mathrm{C}=\mathrm{O}$ bond axis. If, for example, in acetophenone, $\mu_{\text {res }}$ (which can be regarded as the vector sum of $\mu_{C=0}$ and $\mu_{\text {mesomeric }}$) were disposed 10° away from the $\mathrm{C}=\mathrm{O}$ axis (as in Fig. 4) then ${ }_{\mathrm{m}} K$ calc. would be $+394 \times 10^{-12}$. The observed molar Kerr constants of 2,4,6-trimethylacetophenone (-129×10^{-12}) and $2,3,5,6$-tetramethylacetophenone (-196×10^{-12}) are in excellent agreement with those predicted for $\phi=90^{\circ}$.

Smith ${ }^{6}$ had concluded from a comparison of the dipole moments of benzaldehyde $(2.92 \mathrm{D})$ and of $2,4,6$-trimethylbenzaldehyde (2.96 D) that there was little or no steric hindrance in the latter. Bentley et al., ${ }^{4}$ in 1949, had shown that $\mu(2.96 \mathrm{D})$ for acetophenone, was greater than $\mu(2.81 \mathrm{D})$ for $2,4,6$-trimethylacetophenone, from which it was inferred that the steric interaction of the 2 - and the 6 -methyl substituent with the acetyl

[^1]Table 3.
Calculated polarisability semiaxes and molar Kerr constants.

group would inhibit mesomerism by preventing a planar or near-planar conformation. These results, while only qualitative, are in harmony with our conclusions. Braude and Sondheimer ${ }^{1}$ have constructed scale drawings of the uniplanar structures which indicate that " an o-methyl group causes no steric overlap with the hydrogen atom of a formyl group, slight overlap with the oxygen atom of a formyl or acetyl group, and considerable overlap with the methyl portion of an acetyl group." From an examination of the ultraviolet absorption spectra of these substances, they show that introduction of methyl groups in the 2 - and the 6 -position results in a marked decrease in the K-band intensity for acetophenone, but a very small decrease for benzaldehyde. This they relate to the interplanar angle ϕ (for details see ref. 1, p. 3760) which, for 2,4,6-trimethylacetophenone, they estimate as ca. 63°. Our calculations for structures, defined by $\phi=60^{\circ}$, of $2,4,6$-tri-methyl- and 2,3,5,6-tetramethyl-acetophenone lead to molar Kerr constants (-20×10^{-12} and -43×10^{-12}, respectively; see Table 3 for polarisability semiaxes, etc.) which differ considerably from our experimental values.

The award of a Gritton Research Scholarship to M. G. C. is gratefully acknowledged.

[^0]: * Polarisability semiaxes of bonds or groups, b_{L}, b_{T}, or b_{V}, or of molecules, b_{1}, b_{2}, or b_{3}, are quoted throughout in 10^{-23} c.c. units.
 ${ }^{7}$ Le Fèvre and Le Fèvre, Rev. Pure Appl. Chem. (Australia), 1955, 5, 261.
 ${ }^{8}$ Wesson, " Tables of Electric Dipole Moments," Technology Press, M.I.T., 1948.
 ${ }^{9}$ Cherrier, Compt. rend., 1947, 225, 1306.
 ${ }^{10}$ Le Fèvre and Le Fèvre, Ch. XXXVI in " Physical Methods of Organic Chemistry," ed. Weissberger, Interscience Publ., Inc., New York, London, 3rd edn., Vol. I, p. 2459.
 ${ }^{11}$ Le Fèvre and Le Fèvre, $J ., 1956,3549$.
 12 Le Fèvre, Le Fèvre, and Rao, J., 1959, 2340.
 ${ }^{13}$ Aroney and Le Fèvre, $J ., 1960,3600$.
 ${ }^{14}$ Le Fèvre and Steel, Chem. and Ind., 1961, 670.

[^1]: ${ }^{15}$ Bramley and Le Fèvre, J., 1962, 56.
 ${ }^{16}$ Vogel, Cresswell, Jeffery, and Leicester, J., 1952, 514.

